(Christian County Water District) Water Quality Report (2019)

Water System ID: KY0240521

Manager: James Owen

CCR Contact: James Owen

Phone: 270-886-3696

Mailing Address: P.O Box 7 Hopkinsville KY.42241

Meeting Location and Time: 1940 Dawson RD. Hopkinsville KY, 42240 1st Thursday Each Month at 6:00 pm

Source Information:

This report is to inform the public about the quality of water and service provided on a daily basis. During 2019 the Christian County Water District purchased water from three sources. Customers who live in the Gracey area. Hwy 117, Hwy272, Hwy164, and all side roads in these areas were supplied with water purchased from Barkley Lake Water District which is treated surface water drawn from Barkley Lake. Customer who live on the Todd County side of west fork red river on Barkers Mill and Chapel Hill were supplied with surface water purchased from Todd County Water District all other customer in Christian County were supplied with water purchased from Hopkinsville Water Environment Authority (HWEA) has treated surface water which is drawn from Barkley Lake, the North Quarry and the South Quarry.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects may be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and may pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria, (sewage plants, septic systems, livestock operations, or wildlife). Inorganic contaminants, such as salts and metals, (naturally occurring or from stormwater runoff, wastewater discharges, oil and gas production, mining, or farming). Pesticides and herbicides, (stormwater runoff, agriculture or residential uses). Organic chemical contaminants, including synthetic and volatile organic chemicals, (by-products of industrial processes and petroleum production, or from gas stations, stormwater runoff, or septic systems). Radioactive contaminants, (naturally occurring or from oil and gas production or mining activities). In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water to provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of ii/ection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Information About Lead:

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Your local public water system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Some or all of these definitions may be found in this report:

Maximum Contaminant Level (MCL) - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - the level of a drinking water disinfectant below which there is no known or expected risk to health.

MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Below Detection Levels (BDL) - laboratory analysis indicates that the contaminant is not present.

Not Applicable (N/A) - does not apply.

Parts per million (ppm) - or milligrams per liter, (mg/1). One part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) - or micrograms per liter, (pg/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Parts per quadrillion (ppq) - one part per quadrillion corresponds to one minute in 2,000,000,000 years or one penny in \$10,000,000,000.

Picocuries per liter (pCi/L) - a measure of the radioactivity in water.

Millirems per year (mrem/yr) - measure of radiation absorbed by the body.

Million Fibers per Liter (MFL) - a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Nephelometric Turbidity Unit (NTU) - a measure of the clarity of water. Turbidity has no health effects. However, turbidity can provide a medium for microbial growth. Turbidity is monitored because it is a good indicator of the effectiveness of the filtration system.

Variances & Exemptions (V&E) - State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system shall follow.

Treatment Technique (TV) - a required process intended to reduce the level of a contaminant in drinking water.

Spanish (Espartol) Este informe contiene información muy importante sobre la calidad de su agua beber. Tradúzcalo o hable con alguien que lo entienda bien.

Christian County Water District

Water Quality Data Table

*	MCLG	M	CL,	Detect In	Ra	nge		enganganin-anakaninkaninkaninkaninkaninkaninka		
Contaminants	or MRDLG	TT, or MRDL		Your Water	Low	High	Sample Date	Violation	Topical Source	
Disinfectants & Disinfection	n By-Prod	lucts			terior specifica o	(1	
(There is convincing evider	nce that ac	lditic	on of a c	lisinfecta	nt is r	ecessa	ry for co	ntrol of mi	crobial contaminants)	
Haioacetic Acids (HAA5) (PPb)	NA	age of the second department of the second	60	35	17	52	2019	No	By-product of drinking water chlorination	
TTHMs [Total Trihalomethanes] (ppb)	NA		80	42	18	72	2019	No	By-product of drinking water disinfection	
Microbiological Contamina	ants	tetininingion		11	- Andrewski - Angresia		and the second s	ong-error vermer process over protection	er den geregen der	
Total Coliform (RTCR)	NA		TT	NA	NA	NA	2019	No	Naturally present in the environment	
Contaminants	MCLG	AL	1	Sample Date	Exc	amples ceeding	1	1	Typical Source	
Inorganic Contaminants	telleteleteleteleteleteleteleteletelete	becomplete to the second	loren periode in proper proper periode	n Europeann Seamhau Geargan an Ann an	en la companya de la	(groups and service control of the		uestones es dimensiones de Presidentes		
Copper - action level at consumer taps (ppm)	1.3	1.3	.11	2018		0	No	plum	Corrosion of household plumbing systems; Erosion of natural deposits	
Inorganic Contaminants					grania and a second					
Lead - action level at consumer taps (ppb)	0	15	.002	2018		0	No	plun	Corrosion of household plumbing systems; Erosion of natural deposits	

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Your Water	Violation	Typical Source
Chlorine (as CI2) (ppm)	4	4	1.15	No	Water additive used to control microbes

2019 WATER QUALITY REPORT

2019 Water Quality Data

The data presented in this report is from the most recent testing done in accordance with administrative regulations in 401 KAR Chapter 8. As authorized and approved by the EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data in this table, though representative, may be more than one year old.

		A	lowable	Levels	t	lighest Single Level	Lowest Monthly %		Violation	Likely Source			
1. To	urbidity	Neve	more th	nan 1 NTU		0.08	100%	6	No	Soil runoff			
(N	TU) TT	Less than 0 each mont				Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration.							
Reg	Regulated Contaminant Test Results												
	Contam [code] (MCL	MCLG	Highest Level	Range		te of mple	Violation Yes/No	Likely Source of Contamination			
Mic	robial C	ontaminan	ts										
	E. coli Bac 0% positiv		0%	0	0%	N/A	N	I/A	No	Human and animal fecal waste			
Rad	dioactive	e Contamin	ants										
3.	Combined (pCi/L)	Radium	5	0	1.5	1.5 - 1.5		eb 017	No	Erosion of natural deposits			
4.	Uranium (ug/l)	30	0	2.2	2.2 - 2.2		eb 017	No	Erosion of natural deposits			
Ino	rganic C	ontaminar	nts										
5.		022] (ppm) eeded the AL)	AL= 1.3	1.3	0.0543 (90th percentil	0.0015 0.0849	1 .	- Sept 018	No	Corrosions of household plumbing systems			
6.	Lead [103		AL= 15	0	2.0 (90th percentil	2.0 - 38	3 1 .	- Sept 2018	No	Corrosion of household plumbing systems			
	L	ead and Copp	er monit	oring is do	ne together	during the mo	onths of Ju	ıly, Augu	st and Sep	tember.			
7.	Barium [1010] (p	pm)	2.0	2.0	0.042	0.042 - 0.	042 [nuary 2019	No	Drilling wastes; metal refineries; erosion of natural deposits			
8.	Fluoride [1025] (p	pm)	4.0	4.0	0.7	0.7 - 0.	7	nuary 2019	No	Water additive which promotes strong teeth			
9.	Nitrate [1040] (p	opm)	10	10	3.51	0.711 - 3	51 I	April 2019	No	Fertilizer runoff; leaching from septic tanks; sewage; erosion of natural deposits			
10.	Nitrite [1041] (¡	opm)	1	1	0.2	0.1 - 0.	2	ctober 2019	No	Fertilizer runoff; leaching from septic tanks; sewage; erosion of natural deposits			

Maximum Contaminant Levels (MCLs) are set at very stringent levels. To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Contaminant [code] (units)	MCL MCLG ,,		Range	Date of Sample	Violation Yes/No	Likely Source of Contamination				
Disinfectants/Disinfection Byproducts and Precursors										
11. Total Organic Carbon (ppm)	П	N/A	1.72 (lowest average)	1.33 - 2.92 (monthly ratios+)	2019	No	Naturally present in environment.			
*Monthly ratio is the % TOC removal achieved to the % TOC removal required. Lowest annual average of the monthly ratios must be 1.00 or greater to meet the treatment technique.										
12. Chlorine (ppm)	MRDL = 4	MRDLG = 4	1.67 (highest average)	0.20 - 2.69	2019	No	Water additive used to control microbes			
13. Haloacetic acids or HAA (ppb) (Stage 2) Individual Sites	60	N/A	41 (annual average)	11 - 32	2019	No	By-product of drinking water disinfection			
14. Total Trihalomethanes TTHM (ppb) (Stage 2) Individual Sites	or 80	N/A	46 (annual average)	15 - 40	2019	No	By-product of drinking water disinfection			

	Average	Range of Detection
Fluoride (added for dental health)	0.7	0.62 - 0.82
Sodium (EPA guidance level = 20 mg/l	4.5	4.13 - 4.82

Unregulated Contaminants Monitoring Rule

Our water system has sampled for a series of unregulated contaminants. Unregulated contaminants are those that don't yet have a drinking water standard set by EPA. The purpose of monitoring for these contaminants is to help EPA decide whether the contaminants should have a standard. As our customers, you have a right to know that these results are available. If you are interested in examining the data, please contact Jenny Moss at (270) 887.4147 or P.O. Box 628, Hopkinsville, Kentucky 42241.

Unregulated	Average	Range (ppb)	Date
HAA5	27.925	5.8 to 42.0	Dec 2018 — Sept 2019
HAA6Br	7.257	1.02 to 10.1	Dec 2018 — Sept 2019
НАА9	35.020	6.82 to 51.2	Dec 2018 — Sept 2019

EPA has not established drinking water standards for unregulated contaminants. There are no MCLs and therefore no violations if found. The treatment plant and distribution system sampling protocol was determined by the UCMR4 regulation requirements and the Kentucky Division of Water.

To understand the possible health effects described for many regulated contaminants, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

The data presented in this report are from the most recent testing done in accordance with administrative regulations in 401 KAR Chapter 8. As authorized and approved by EPA, the State has reduced monitoring requirements for cartain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data in this table, though representative, may be more than one year old. Copies of this report are available upon request by contacting our office during business hours.

Regulated Contaminant 7	est Result	9					· · · · · · · · · · · · · · · · · · ·			
Contaminant	MCL	MCLG	Report		Rai	nge	Date of		Likely Source of	
[code] (units)	MCL	MICEG	Level	or	Det	eotion	Sample	Violation	Contamination	
Inorganic Contaminants										
Barium									D. 20	
[1010] (ppm)	2	2	0.025	0.025	[0	0.025	Aug-19	No	Drilling wastes, metal refineries; erosion of natural deposits	
Pluorido										
[1025] (ppm)	4	4	0.07	0.07	to	0.07	Aug-19	No	Water additive which promotes strong teeth	
Nitrato									Pertilizer runoff; leaching from	
[1040] (ppm)	10	10	0.405	0.209	lo	0.405	Feb-19	Nα	septic tanks, sewage; erosion of natural deposits	
Disinfection Byproduct P	recursor		-							
Total Organic Carbon (ppm)			1.5							
(measured as ppm, but	-1-T-4	N/A	(lowest	1 00	to	2,33	2019	No	Naturally present in environment,	
reported as a ratio)			average)	(Imoi	nthly	y ratios)				
*Monthly ratio is the % TOC t	emoval achi	eved to the % T(C removal re	equired. Ans	nual	l average must	be 1.00 or gre	ater for comp	oliance.	
Chlorine	MRDI.	MRDLG	1.49							
(ppm)	= 4	=4	(highest	0 73	10	2.2	2019	No	Water additive used to control microbes.	
			nverage)						iniciodes.	
HAA (ppb) (Stage 2)			37							
[Haloacetic acids]	60	N/A	(high site	19	to	55	2019	No	Byproduct of drinking water disinfection	
			average)	(range of	ind	ividual sites)				
TTHM (ppb) (Stage 2)			46						22d	
[total tribalomethanes]	80	N/A	(high site	23	to	57	2019	No	Byproduct of drinking water disinfection.	
			avcrage)	(range of	ind	ividual sites)			diamiestron.	
Household Plumbing Con	taminants						_			
Copper [1022] (ppm)	AL=		0.415						Gishawahaldalumhlus	
sites exceeding action level	13	13	(90 th	0.0148	to	0.76	Aug-18	No	Corrosion of household plumbing systems	
0			percentile)						ayotoma	
Lead [1030] (ppb)	AL=		3						Committee of the calculation of the	
sites exceeding action level	15	0	(90 th	0	lo	9	Aug-18	No	Corrosion of household plumbing systems	
0			percentile)						ayatuma	
Other Constituents										
Turbidity (NTU) TT	Al	lowable	High	est Single		Lowest	Violation	Likely Source of Turbidity		
* Representative samples	1	Levels	Мея	surement		Monthly %	A TOTATION			
Turbidity is a measure of the	No more th	an I NTU*								
clarity of the water and not a	Less than 0	.3 NTU in	0.2	4		100	No s		Soil runoff	
contaminant.	95% of mo	nthly samples								

Your drinking water has been sampled for a series of unregulated contaminants. Unregulated contaminants are those that EPA has not established drinking water standards. There are no MCLs and therefore no violations if found. The purpose of monitoring for these contaminants is to help RPA determine where the contaminants occur and whether they should have a standard. As our customers, you have a right to know that these data are available. If you are interested in examining the results, please contact our office during normal business hours.

Unregulated Contaminants (UCMR 4)	Average	Ra	Date		
Manganese	0.583	0.583	LO	0.583	Feb-19
IIAA5	22.175	20.2	to	25.3	Feb-19
НАЛ6Вг	3.775	3.61	to	4.01	Feb-19
IIAA9	25.950	23.8	to	29.3	Peb-19

Logan/Todd Regional Water Commission 2019 Water Quality Data KY1101005

The data presented in this report are from the most recent testing done in accordance with administrative regulations in 401 KAR Chapter 8. As authorized and approved by EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected

to vary significantly from year to year. Some of the data in this table, though representative, may be more than one year old.

to vary significantly from year	to year. Son	ne of the data	in this table, th	nough represe	ntative,	may be mor	e than one ye	ar old.		
	Allo	wable	Highest Sin	igle		Lowest	Violation			
	Le	vels	Measurement			Monthly 9	%	Likely Source		
Turbidity (NTU) TT	No more th	an 1 NTU*								
* Representative samples	Less than 0	.3 NTU in	0.084			100	No	Soil runoff		
of filtered water	95% of mo	nthly samples								
Regulated Contaminan	t Test Re	sults								
Contaminant			Report		Range		Date of	Violation	Likely Source of	
[code] (units)	MCL	MCLG	Level	of	Detectio	n	Sample		Contamination	
Inorganic Contaminan	ts									
Barium		omes mile								
[1010] (ppm)	2	2	0.021	0.021	to	0.021	Jul-19	No	Drilling wastes; metal refineries; erosion on natural deposits	
Fluoride										
[10 25] (ppm)	4	4	0.719	0.719	to	0.719	Jul-19	No	Water additive which promotes strong teeth	
Nitrate									To all the Control of	
[1040] (ppm)	10	10	0.168	0.168	to	0.168	May-19	No	Fertilizer runoff; leaching from septic tanks, sewage; erosion of natural deposits	
Disinfectants/Disinfect	ion Bypro	ducts and	Precursor:	8			L			
Total Organic Carbon (ppm)			1.26							
(measured as ppm, but	TT*	N/A	(lowest	1.50	to	1.81	2019	No	Naturally present in environment.	
reported as a ratio)			average)	ge) (monthly ratios)						
*Monthly ratio is the % TOC	removal ach	ieved to the %	TOC remova	l required. Aı	nual ave	erage must l	e 1.00 or gre	ater for compl	iance.	
Other Contaminants										
Cryptosporidium	0	TT		1		12	2019	*See note	Human and animal fecal waste	
[oocysts/L]		(99% removal	(positive	positive samples) (no. of		of samples)		below	ALLMAN MINIMA AUGU TUOTO	

The data presented in this report are from the most recent testing done in accordance with administrative regulations in 401 KAR Chapter 8. As authorized and approved by EPA, the State has reduced monitoring requirements for certain contaminants to less often than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data in this table, though representative, may be more than one year old.

contaminants are not expecte	d to vary sig	nificantly from y	ear to year. S	ome of the	e data	in this table,	though represe	entative, may	be more than one year old.	
	Allowable		Highest Si	ngle		Lowest	Violation			
	I	Levels	Measuren	ient	N	Monthly %			Likely Source	
Turbidity (NTU) TT	No more tha	an 1 NTU*								
* Representative samples	Less than 0.	.3 NTU in	0.08	34		100	No		Soil runoff	
of filtered water	95% of mor	nthly samples								
Regulated Contamina	nt Test R	esults								
Contaminant			Report		Rang	ge	Date of	Violation	Likely Source of	
[code] (units)	MCL	MCLG	Level	of	Dete	ction	Sample		Contamination	
Microbiological Conta	aminants									
Total Coliform Bacteria	1	0			N/A				Naturally present in the	
# or % positive samples									environment	
Inorganic Contamina	nts									
Barium									Drilling wastes; metal refineries;	
[1010] (ppm)	2	2	0.021	0.021	to	0.021	Jul-19	No	erosion of natural deposits	
Copper [1022] (ppm)	AL=								Corrosion of household plumbing	
sites exceeding action level	1.3	1.3	(90 th percentile)	0	to	0			systems	
Fluoride			percontine)							
[1025] (ppm)	4	4	0.719	0.719	to	0.719	Jul-19	No	Water additive which promotes strong teeth	
Nitrate [1040] (ppm)	10	10	0.168	0.168	to	0.168	May-19	No	Fertilizer runoff, leaching from septic tanks, sewage; erosion of natural deposits	
Disinfectants/Disinfec	tion Bypr	oducts and I	recursors							
Total Organic Carbon (ppm)			1.26		-					
(measured as ppm, but	TT*	N/A	(lowest	1.50	to	1.81	2019	No	Naturally present in environment.	
reported as a ratio)			average)	(mo	onthly	ratios)				
*Monthly ratio is the % TOC	removal ac	hieved to the %	TOC removal	required.	Annu	al average mi	ist be 1.00 or	greater for co	ompliance.	
Chlorine	MRDL	MRDLG	1.80						Water addition used to control	
(ppm)	= 4	= 4	(highest	1.1	to	2.44	2019	No	Water additive used to control microbes.	
			average)							
HAA (ppb) (Stage 2)			32						Byproduct of drinking water	
[Haloacetic acids]	60	N/A	(high site)	32	to	32	2019	No	disinfection	
(Annual Sample)				(range of individual sites)						
TTHM (ppb) (Stage 2)			56						Byproduct of drinking water	
[total trihalomethanes]	80	N/A	(high site)	56	to	56	2019	No	disinfection.	
(Annual Sample)				(range o	of indi	vidual sites)	L			